Int. J. Heat Mass Transfer.
Printed in Great Britain

Vol. 32, No. 5, pp. 913-921, 1989

Stochastic modelling for contact problems
in heat conduction

DA YU TZOU

Department of Mechanical Engineering, University of New Mexico,
Albuquerque, NM 87131, U.S.A.

(Received 4 December 1987 and in final form 3 October 1988)

Abstract—In this analysis, an attempt is made to simulate thermal conductivity of the material in the
contact area between two bodies as a random variable in the process of heat diffusion. The problem is
formulated as a stochastic field in contact with two deterministic fields. The randomness is considered to
vary from one specimen (two bodies in contact) to another in a statistical ensemble space Q. The stochastic
response in the contact area is presented in terms of the mean value and standard deviation of the
temperature field. A perturbation scheme is employed in the formulation such that the stochastic response
for the present problem with intrinsic randomness can be obtained in the same manner as that in the
problem with extrinsic randomness. The implicit finite difference method is used to solve the field equations
governing the deterministic components of the random temperatures. The locations possessing the
maximum deviations from the expected value in the random field are investigated. In the numerical
examples, both Gaussian and Gamma processes are considered as the probabilistic density functions
governing the random variates.

0017-9310/89 $3.00 +0.00
© 1989 Pergamon Press plc

INTRODUCTION

WHEN HEAT passes through the interface between
two bodies in contact, the amount of thermal energy
transferred depends on the modes of heat conduction
through solid-to-solid contact, heat conduction and
convection through the interstitial gas region and
thermal radiation among the contact surfaces. As a
global evaluation, the constriction resistance in this
area can be estimated by the fraction rule weighing
the respective volumes of the solid media and the air
relative to that of the total. The surface configurations
of the two bodies in the contact area obviously domi-
nate the modes of thermal energy transfer. Owing to
irregularity of the contact pattern and its sensitive
variation with the applied pressure, the relationship
between the volume fraction of each medium and the
constriction resistance can hardly be deterministic in
reality.

Traditionally, a zonal resistance or conductance is
established for the contact area such that the heat
transfer through this complicated area can be esti-
mated according to the temperature difference across
it. For bare materials, Yovanovich developed a gener-
alized analytical model for metal paraboloids [1] and
extended it later to the contact between a single spheri-
cal surface and a flat plate [2]. Under this approach,
it is assumed that the surface roughness of the contact
surfaces is negligible and that heat conduction and
convection in the surrounding fluids are absent. The
complicated heat transfer modes in the contact area
are absorbed in a thermal constriction resistance para-
meter which is a function of the deformed geometries
of the two bodies in contact. Some elasticity theories

are also involved in this model to characterize the
contact configuration of the solid under an exerted
pressure. The contact radius for a spherical particle,
for example, in contact with a flat plate has been
obtained under the Hertzian condition [3] and ex-
pressed in terms of Young’s modulus and Poisson’s
ratio of the two bodies. The effects of thermal strains
on the contact configuration were also considered as
early as 1966 [4].

The modelling techniques used in the problems of
contact between bare materials are also extended to
the estimation of the thermal contact conductance of
packed beds in contact with a flat surface. Typical
examples can be found in refs. [5, 6]. Peterson and
Fletcher [6] combined the analytical models estab-
lished by Yovanovich and Kitscha [2] for bare
materials and Clausing and Chao [7] involving the
effects of microscopic asperities. The resulting
expression for the thermal constriction resistance in
their model contains, in addition to the Hertzian con-
tact radius and the mean harmonic conductivity, the
Roess microscopic constriction alleviation factor and
the total number of contact points. Experimental
results for the beds comprising aluminum 2017-T4,
yellow brass, stainless steel 304 and chromium alloy
AISI 52100 in contact with flat stainless steel 304 were
obtained and checked with their model.

It is important at this point to distinguish the resist-
ance induced by surface roughness and that induced
by surface waviness. In the analytical approach, the
assumption that the contact spot has a certain shape—
say a circle—actually contributes to the effect induced
by the surface waviness. The characteristic dimension
of the spot must be confined to the continuum level,
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M algebraic mean of k, and kg
length of solid media A and B
sequence of the time increment
total number of nodes

order of the perturbation system
process parameter

heat flux vector

Q'ﬁ:zghk‘

NOMENCLATURE
b process parameter S[T] standard deviation of T
c heat capacity in the contact domain T random temperature in the domain of
D( ) probabilistic density function in the contact
sample space Ta, Tz deterministic temperature in solids A
d physical dimension of the contact and B
domain t physical time
E[T] mean value of T At equal time increment used in the finite
f() random sample function difference method
fa boundary temperature Var [T] variance of T
91,9, deterministic functions in thermal V@  deterministic component of T*
conductivity x space variable
g stochastic function defined in equation Ax  equal spacing among nodes in the finite
03] difference method.
i nodal sequence in the finite difference
method
k random thermal conductivity in the Greek symbols
contact area o random number of specimen in Q
ka, kg thermal conductivity for solids A and B £ amplitude of the random fluctuation of &

Ka, kg thermal diffusivity in solids A and B
Ky equivalent thermal diffusivity defined

from ky

Yl parameter defined as At/(Ax)?

P density of the medium in the contact
domain

Q statistical ensemble space.

or the analysis based on a continuum formulation
does not have sufficient resolution. Doubtless, this
approach provides enough information for the
thermal field around a cavity.

In dealing with the effects induced by the surface
roughness, a different approach is needed in order to
incorporate the combined effects of all the subscale
interactions among the attending media in the contact
area. Since the heat transport process—say a thermal
diffusion equation in the solid—is formulated in a
scale at least two to three orders of magnitude larger
than that of the surface roughness, one may choose to
treat the subscale interactions as a disturbance to the
thermal properties used in the continuum formu-
lation. Furthermore, because the contact pattern
between two bodies is sensitive to the applied apparent
pressure, such a disturbance is formulated more
appropriately as a random variable, especially under
dynamic contact situations. Under a certain stochastic
process governing the probabilistic distribution of
thermal conductivity in the statistical ensemble space
Q, one wants to estimate the mean value of tem-
perature as well as its standard deviation resulting
from such a disturbance. As discussed in ref. [8], the
problem formulated in this manner introduces intrin-
sic randomness to the system, and a special pertur-
bation technique may need to be employed to avoid
difficulties in dealing with a field equation with
random coefficients.

In the present study, this approach is taken and the
thermal conductivity in the contact area is formulated
as a random variable. Its amplitude, due to the dis-
turbance from subscale interactions, varies from one
specimen (two bodies in contact) to another in the
space €. Conceptually, this is also the situation for a
single specimen subjected to capricious contact pres-
sure under dynamic conditions. The temperature dis-
tribution across the contact area will be presented
in terms of its mean value and standard deviation.
Several typical stochastic processes for the random
fluctuation are to be considered in a transient problem
considered as an example.

FORMULATION OF THE PROBLEM

Consider the transition of thermal conductivity from
solid A to B shown in Fig. 1. The total length and
contact region between the two bodies are assumed
to be 2L and 2d, respectively. Without loss of gener-
ality, it is also assumed that 2L and 2d are equally
shared by the two media. It should be noticed that the
half contact length d here is not the characteristic
dimension of the surface roughness, but rather a
threshold beyond which the effects of subscale dis-
turbance cannot be detected. Obviously, the value of
dshould be smaller if the contact is smoother, and larger
if the contact is rougher. For xe[—L, —d] and
xe[d, L], therefore, thermal conductivity has deter-
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Fi1G. 1. Configuration of two bodies in contact and transition of the thermal conductivity.

ministic values of k, and kg, respectively. While in
the contact region xe[—d, d], the complicated heat
transport process (conduction in media A and B, and
mixed conduction and free convection in the void
space) is simulated by a medium with random thermal
conductivity. Its amplitude ¢ oscillates up and down
along a certain path of transition in each case, but in
a series of experiments, the oscillatory pattern also
randomly varies from one case to another through a
stochastic sample function f(x). A functional form of
the thermal conductivity in this domain can thus be
written as

k(x) = knl(e/km)g(x; ) +g2(x)] M

where
ey = (kat+ks)/2, g(x;0) = f(@)g,(x)
9:1(x) = x*—d?,  gx(x) = [(ky —ka)/2dkp)x+1.
2

The sample function f(x) is governed by the proba-
bilistic density function (p.d.f.) D(a) under a certain
stochastic process of the random variate a. It is defined
in an average sense over the entire space Q through
the p.d.f.:

E[f(@)} = Lf (2)D(2) da,
Var [f @)] = E{f (@) —E[f @)]}*. €)

The problem formulated in this manner involves a
stochastic field in contact with two deterministic fields.
For xe[—L,—d] and xeld, L], the thermal con-
ductivities are deterministic constants, and the
diffusion equation can be written as

Tarx = (1/ka)TA, forxel—L,—d] (4
Tpx = (1/xg)Ts, forxeld, L] &)
while for xe[—d,d], due to the x-dependence of k

HMT 32/5-1

shown in equation (1), one has

[k(x) T,x].x = pcT,. ®

Since k(x) in the contact region is a random function,
equation (6) is a partial differential equation with
random coefficients. As discussed in detail in ref. [8],
solving this equation directly will render a situation
in which the random response (say, mean value of T)
of the system depends not only on the intrinsic
random excitation with the same statistical order
(mean value of k), but also on those with higher
orders, such as covariance between k and T,, and
k, and T,. Unless a statistical constitutive equation
relating Cov [k, T,,] and Cov [k, T ] to E[T] can be
established experimentally, this approach is difficult
to apply, since the number of equations is always
less than the number of unknowns. In this situation,
thermal conductivity formulated in the form of equa-
tion (1) has its advantage in using the perturbation
method suggested in the previous work. By substitut-
ing equation (1) into equation (6), one may obtain

((&/km)g + T ox +[(6/hm)g c + 92,517 = (1em)T,
(™

with k) being defined as ky/pc. Equations (4), (5) and
(7) constitute the governing equations for the thermal
field under consideration. The initial and boundary
conditions imposed on the system are assumed to be

T(x,0) = Ty(x,0) = Tp(x,0) =0 atr=0 (8)
and
Ta=fu() atx=—L
To=T and T,,=T,
Te=T and Tp,=T,
Ta=0 atx=L.

atx = (junction

conditions)

d
®

It should also be mentioned that the temperature and

atx =
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its gradient in the stochastic field are only defined
in a mean value sense. The junction conditions in
equation (9) guarantee that the statistical quantities
are continuous across the interface. As far as this
point is concerned, one should recall that the mean
value of a deterministic quantity is equal to the quan-
tity itself, and the variance of a deterministic quantity
is equal to zero.

PERTURBATION SYSTEM OF THE
GOVERNING EQUATIONS

For the contact pattern dominated by the surface
roughness, the fact is recognized that the amplitude ¢
of the disturbance imposed on the thermal con-
ductivity k(x) (referring to equation (1)) should be
small in comparison with the mean value of ky,. This
suggests the possibility of using the quantity ¢/ky, as
a small parameter ; a perturbation algorithm can thus
be developed. By expanding T'(x, ¢; ), Ta(x, t;a) and
Ta(x, t; ) in terms of a series of g/ky

{T(x’ t; a)? TA(x, t;a), TB(x’ t;a)}
= i (&lkm)"{T® (x, t;0), TS (x, 5 0), Te” (x, 15 0)}

(10)

and substituting equation (10) into equations (4), (5)
and (7), a system of equations can be obtained for
various orders of ¢/ky. The following results are
obtained :

zeroth-order system
T = (1/xkA) T2

92T +9:. T =

T§% = (i) TE? (1)
(/TS (12)
subjected to the initial and the boundary conditions
TO=TO =T =0 atz=0 (13)
and

TO =f() atx=—-L; T =0 atx=1L

TO =T, TO =T atx=—d
T =T®;, TO =T atx=d (14
nth-order system;n = 1,2, 3, ... (positive integers)
TP = (kDTS T = (/xa)TE)  (15)
TR+ g2 TP = (k)T = —gTm P —g, T3P
(16)
subjected to the initial and the boundary conditions
TO =TP=TP =0 att=0 a7
and
TP =0 atx=-L; TP =0 atx=1L
TP =T®; TP =T atx=—d
TP =T"; TN =TS atx=d. (18)
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It is first observed that the zeroth-order system shown
in equations (11)—(14) is the corresponding deter-
ministic problem with ¢ being zero (0). It is then clear
that the effects of subscale disturbance will gradually
enter the problem as the contributions of T,
n=12,..., are summed in perturbation series (10).
Another nice feature about the perturbation system
can be observed from equation (16). Due to the pres-
ence of the g function and its derivative on the right-
hand side of the equation, T"(x, ¢; ), T (x, ¢; @) and
T$(x, t; %) can be expressed in the following form :

{T®(x, t;0), TO(x, t;0), TE(x, 15 0)}

= fO@{VPx 0, VP 0, VP, 0}, n=12,...

(19)

because the boundary conditions, except those for
n = 0, are homogeneous in various orders of the per-
turbation system. Substituting equation (19) into
equation (10), one thus obtains

{T(xa t;a)’ TA(x’ t; a)’ TB(x’ t; a)}
Z (/) f" @{V ™ (x, ), V2 (x, 1), VE (x, 1)}

(20)

where the equations governing V' (x, 1), V{’(x, ) and
V§(x, t) are the same as those shown by equations
(11) and (12) for n = 0 and equations (15) and (16)
for n > 1, except that g and g, on the right-hand
side of equation (16) are replaced by g, and g, ,,
respectively. It is important to notice that all the V-
functions under such a formulation are deterministic.
The effects of random fluctuation on the temperature
field are concentrated on the factor of f™(«) in the
perturbation series. The solutions of 7, T, and T}
expressed in the form of equation (20) make it possible
to calculate the mean value and the standard deviation
of the temperature fields in a straightforward manner.
For the time being, however, we will focus our atten-
tion on finding the solutions for V®(x,?), V{(x, 1)
and V{(x,?). Although the zeroth-order system—
equations (11)-(14)—may have analytical solutions,
the implicit algorithm of the finite difference method
[10] will be used in this analysis. Due to the non-
homogeneous term appearing in the first-order
system, analytical solutions for the first and higher-
order systems cease to exist, owing to the complicated
integral involving the zeroth-order solution and the
Jacobian of the homogeneous solutions.

The implicit finite difference algorithm is uncon-
ditionally stable and straightforward in the present
problem. Supposing that the entire field is discretized
into N nodes with equal spacing Ax = 2L/(N—1), the
implicit difference equations corresponding to equa-
tions (11), (12), (15) and (16) at a time instant ¢ = mAz,
with m being a positive integer, are
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Vi m+1) = VI (ium) = 1,4V (i~ 1, m+1)
— 2V m+ 1)+ VP+ 1, m+ 1]

for/=A4,Bandn=0,1,2,... (21)

VO>Um+1)—VO>U,m) = kyAdh [V O>(—1,m+1)
=2V OUm+ D)+ VO>U+1,m+1)]
+ kM (A A G [V O+ 1,m) =V OG,m)] (22)
and
KkmAGLV O —1,m+ 1) =2V (i, m+1)
+VO>i+ 1, m+ D]+ ey (A/AX)G VO + 1, m)
— VO3, m))—[VOE, m+1)— VP, m)
= —kmAg [V (i—1,m+ 1) =2V (i, m+1)
+ VG4 1, m+ )] -k (At/Ax)g,

X PO+ 1Lm)—veP(Em], n=12,...
23

where 1 = At/(Ax)”. In these equations, the symbol
(i,m) denotes a physical quantity calculated at the
ith node and the mth time instant, and superscript i
denotes a function calculated at the ith node in the
spatial discretization. The procedure for solving equa-
tions (21)—(23) subjected to the initial and boundary
conditions (14) and (18) in various orders of the per-
turbation system is quite standard and will not be
repeated here.

For the nodes in the contact area, the algorithm of
Lagrangian interpolation is further employed to
improve the accuracy in estimating the derivatives of
V@=Y(i, m). For a value of &/ky 10%, an accuracy of
0.1% can be achieved by solving the perturbation
system up to the second order. For a more serious
situation with, say, ¢/k,, = 0.5, the same accuracy can
be achieved by solving the system up to the tenth
order. In the event that ¢/ky is even larger than this
threshold, surface waviness must be considered in the
formulation, but this situation is not covered in the
present analysis.

STOCHASTIC RESPONSE OF THE
THERMAL FIELD

The temperature field obtained from equation (20)
is only meaningful in a statistical sense. For an
expression with second-order approximation

{T(x,1;0), Ta (%, 1;0), Ta(x, 2;0)}
= {VO(x, 0, VO (x, 1), V¥ (x, D)}
+ el @RV O (x, 1), VO (x, ), VP (x, 1)}
+ e/la) @V P (x, 0, V2 (x, 0, VP (x, 0} (24)

the mean value and variance of T(x,;ax) can be
obtained as [8]
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2

E[T(x,0] =}, (s/km)"ELf"@IV®(x, 1)

n=0

Var [T(x, )] = (e/ku)* Var [f(@)]

2
x Y VO, HV3-2(x, ) (25)
n=0

and the standard deviation of the random temperature
from its mean value

S[T(x, ] = /(Var [T(x, ) (26)

can be obtained consequently. At this point, a situ-
ation is achieved in which the statistical order of the
random response is the same as that of the random
excitation. This is a characteristic possessed by prob-
lems with extrinsic randomness, and calculations on
the stochastic response of the system can thus be made
in a straightforward manner.

The heat flux vector can be obtained from Fourier’s

law of heat conduction

q(x,t;0) = —k(x;0)T,

and from equation (27), one has
Elg(x,0] = ~ku Zo (e/km)" VOLE[ ()]

+E/ka)g (DEL @]} (28)

@7

for the mean value
Var [q(x, 1)] = —kn(e/km)*{E[ /> (®)]
— B[ f (@) + (e/km)g i (E[ (@)

—E[f(@D} Zo VROvETT (29)

for the variance, and

Slg(x, 0] = /(Var [q(x, )

for the standard deviation of ¢(x, ¢).

(30)

NUMERICAL EXAMPLES

The ratio ¢/ky will be taken as 0.1 in the following
examples, and the perturbation system will be solved
up to the second order. The sample function f(«) is
assumed to have an exponentially decaying form in
the space Q:

Sf(@) = exp (—puw) (31

while in the first example, the random variable « is
assumed to be governed by a Gaussian distribution [9]

D(x) = (1/b,/(2n)) exp (—a?/2b%). 32)

The mean value for various orders of f(x) and the
variance can be obtained as

E[f(0)] = exp (bp?/2), E[f*(@)] = exp (2b°p?),
E[f*(@)] = exp (96%p*[2),
Var [ f(e)] = exp (2b°p*)—2 exp (56°p?/2)
+exp (4b%p?). (33)
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F1G. 2. Mean value of the temperature distribution in the contact area at ¢ = 150, 350, 750 s, and the
steady-state distribution (denoted by the dashed line). Gaussian process with p = 0.2 and b = 2.

As a second example, the same random function f(«)
is considered, but « is assumed to be a Gamma variate.
In this case, the p.d.f. can be expressed as

D(o) = [o"~ " exp (—a)/T(@)]H(«) (34

where T'( ) and H( ) are the Gamma and Heavi-
side unit step functions, respectively, and the cor-
responding equations to equations (33) can be ob-
tained similarly

Elf@)=(1+p)~", E[f*®]=(1+2p)""
E[f*(@]=(1+3p)""
Var [f(@)] = [(p+D* = @p+1D’)[2p+ 1" (p+1*].

For the physical and geometrical parameters involved
in the system, the contact between aluminum and steel
is considered in a domain of approximately 5.86% of
the total length

d=1875x10"*m

Ky =8x10°ms~'°C!

L=032m,
fa = 250°C,

kg = 1x10"*ms~'°C~ " (36)
In every perturbation system with n =0, 1 and 2, a
total of 256 nodes (120 in each solid and 16 in the
contact domain) is used in the field discretization. The
time increment is selected as 50 s in the calculations.

(35) At a given time instant, based on the algorithm of
. ul l
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FIG. 3. The effect of process parameter p on the mean value of temperature distribution at 1 = 150 s.
Gaussian process with b = 2.
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Lagrangian interpolation, 31 nodes in the stochastic
field are incorporated in the finite difference solutions
for ¥W(x, 1) and V?(x, r) with xe[—d, d]. This is to
enhance the accuracy in estimating the spatial deriva-
tives involved in the non-homogeneous terms of the
first- and the second-order system; as well as those
appearing in the junction boundary conditions at
x = +d.

With emphasis being placed on the contact domain,
Fig. 2 shows the mean value of temperature dis-
tribution at 7 = 150, 350 and 750 s. The steady-state
distribution is obtained by dropping the terms con-
taining time derivatives in equations (11), (12), (15)
and (16). As time increases, the temperature dis-
tribution approaches the steady state and the numeri-

cal convergence of the present algorithm is fairly clear.
The process parameters b and p in the Gaussian pro-
cess are taken to be 2 and 0.2, respectively. The effect
of parameter p on the distribution of E[T(x,?)] is
shown in Fig. 3 when the value of b is fixed at a
constant 2. At a given location x, the value of
E[T(x, ?)] increases as the value of p decreases. The
difference among the distributions becomes more sig-
nificant if either the value of b or the boundary tem-
perature f, is increased. Furthermore, in view of the
symmetry of b and p appearing in equation (33), one
may expect the same effect of b on E[T(x,?)]. The
standard deviation of the temperature distribution is
shown in Fig. 4. It is first noticed that a maximum
deviation occurs at x ~ —13.4 mm in the stochastic

X, mm

F1G. 5. The effect of process parameter p on the mean value of the temperature distribution at t = 150's.
Gamma process with b = 2.
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Fi1G. 6. Standard deviation of the temperature distribution at ¢ = 150 s. Gamma process with b = 2 and
2=02,08.

field—approximately 36% of the corresponding mean
value. The standard deviation S[7T(x, ¢)], similar to
E[T(x,?)] but not as pronounced, decreases as the
parameter p increases. Owing to the junction con-
dition (9) imposed at the boundaries at x = 14, the
values of S[T(x, )] do not vanish in the deterministic
fields A and B. But the magnitude, especially in the
regions far away from the boundaries, is negligible in
comparison with that in the stochastic field. Figures
5 and 6 show the mean value and standard deviation
of the temperature distribution under the Gamma
process. Parameters b and p in this case are those
defined in equation (35). With a constant value of b
of 2, the effects of p on E[T(x,?)] and S[T(x, 9] are
observed to be reversed with respect to those in the
previous case. This is caused by different forms of
D() between Gaussian and Gamma processes. In Fig.
6, one also observes that the differences between the
maximum deviations for p = 0.8 and 0.2 become
larger—by 22 and 12%, respectively, relative to their
mean values. Again, the amount of deviation from
the expected value is by no means negligible. The
stochastic response for the heat flux vector can be
calculated in the same fashion according to equations
(28)—(30). Since it only includes spatial derivatives on
deterministic functions, discussion of g(x, ¢) will be
omitted in this study.

CONCLUSION

Deterministic analysis can be adopted for an engin-
eering system if the standard deviation is small in com-
parison with the corresponding mean value. In the
present analysis, the amount of standard deviation
has been shown to depend on the p.d.f. of a stochastic
process as well as the parameters involved in it. Under
the parametric values considered in the numerical
examples, some cases have been proved for which

stochastic analysis is necessary. The occurrence of a
maximum standard deviation from the mean value
reveals the importance of giving special consideration
to the solid medium. It is expected that the tem-
perature gradient in this neighborhood will also have
a significant deviation, which must be considered care-
fully in the analysis of failure induced by the thermal
field. A more complicated situation will result if the
geometrical contact pattern between the two bodies is
further considered as another random variable in the
present formulation. In this case, the stochastic pro-
cess governing the surface waviness in one specimen
(two bodies in contact) will interact with that govern-
ing the random variation from one specimen to
another in the space Q. Owing to the complexity
involved in this type of problem, it will be left for
future communication.
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MODELISATION STOCHASTIQUE DES PROBLEMES DE CONTACT DANS LA
CONDUCTION THERMIQUE

Résumé—On simule la conductivité thermique d’un matériau dans la zone de contact entre deux corps par
une variable aléatoire dans le mécanisme de diffusion thermique. Le probléme est formulé comme étant
un champ stochastique en contact avec deux champs déterministes, avec variation d’un spécimen (deux
corps en contact) 4 un autre dans un espace statistique £2. La réponse stochastique dans la zone de contact
est présentée en fonction de la valeur moyenne et de I’écart-type du champ de température. Un schéma de
perturbation est employé dans la formulation de telle sorte que la réponse stochastique du probléme présent
puisse étre obtenue de la méme maniére que dans le probléme avec distribution extrinséque. La méthode
aux différences finies implicite est utilisée pour résoudre les équations de champ qui gouvernant les
composantes déterministes des températures aléatoires. On étudie les régions possédant les déviations
maximales par rapport 4 la valeur attendue dans le champ aléatoire. Dans les exemples numériques,
on considére 4 la fois les mécanismes gaussien et gamma comme les fonctions de densité probabiliste
gouvernant les variations aléatoires.

EIN STOCHASTISCHES MODELL FUR KONTAKTPROBLEME BEI DER
WARMELEITUNG

Zusammenfassung—Es wird versucht, die Wirmeleitfahigkeit im Kontaktbereich zwischen zwei Korpern
beim Wirmediffusionsvorgang als zufalisverteilte Variable zu beschreiben. Der Vorgang wird beschrieben
als ein stochastisches Feld in Berithrung mit zwei deterministischen Feldern. Die Variationsmoglich-
keit der Zufallsverteilung zwischen den beiden Korpern wird in einem statistischen Raum-Ensemble
beschrieben. Das stochastische Verhalten im Kontaktbereich wird durch den Mittelwert und die Standard-
abweichung des Temperaturfeldes ausgedriickt. Ein Stoérungsschema wird in der Form angewandt,
daB das stochastische Verhalten des vorliegenden Problems mit innerer Zufallsverteilung auf gleiche Art
und Weise erhalten werden kann wie das bei externer Zufallsverteilung. Es wird die implizite Finite-
Differenzen-Methode verwendet, um die Feldgleichungen der deterministischen Komponenten der
zufallsverteilten Temperaturen zu losen. Es werden die Punkte untersucht, die maximale Abweichungen
gegeniiber den zu erwartenden Werten des zufallsverteilten Feldes aufweisen. In den numerischen Beispielen
werden sowohl GauB- als auch Gamma-Funktionen als die wahrscheinlichsten Verteilungsfunktionen zur
Beschreibung der Zufallsverteilung verwendet.

CTOXACTUYECKOE MOIAEITMPOBAHUE KOHTAKTHBIX 3AJAUY
TEMJIONPOBOAHOCTH

Amoramms—IIpeAnpHHATa NONWTEA CMOJEIHPOBATh TCILUIONPOBOJHOCTb BEILECTBA B OG/IACTH KOH-
TaKTa ABYX Tejl Kak CyuaiHyio mepeMeHHyio B mponecce nuddysun Temna. 3agava Gopmymmpyercs B
tdopMe CTOXaCTHMECKOro HOJIA, KOHTAKTHPYIOIICTO C ABYMS ACTCPMHHHPOBAHHBIMA mosamu, ITona-
raercd, 4To CHy4affHOCTh H3MEHAETCH OT ofHoro obpasna (OBa KOHTAXTHPYIOUIHX Tena) K APYroMy B
NPOCTPaHCTBE CTATHCTAYeCKOro ancaMbGas . CroxacTHyeckmif OTKIHEK B 06JaCTH XOHTAKTA BhHIpAXCH
CpeHHM 3HAYEHHEM M CTAHJAPTHHIM OTKJIOHEHHCM TeMuepaTypHoro noss. Mcnonbsyercs mMeron Bo3-
MYIEHHR, NO3BOJIAOMIMI MONYIHTb CTOXACTHYECKHH OTKIHK IS NAHHOH 3a4a4M C BHYTPCHHHM HCTO4-
HHKOM CJTy9aifHOCTH Cmoco0GOM, aHAJIOTHYHLIM NPHMCHACMOMY B 334a4Y¢ ¢ BHCUIHHM MCTOYHEKOM
cirydafiHOCTH. YpaBHEHHS MOJIA, ONPeae/IAOINME JCTCPMEHAPOBAHHEIE KOMIOHEHTH Cy4aifHBIX 3HAYe-
HHit TEMNIEPATYPHL, PEIIAIOTCS HEAPHHM KOHEHHO-PA3HOCTHHM MetomoM. Hecaenyrorces obiacTu ¢ max-
CAMAJIbHLIM OTKJIOHCHMEM OT OXKHIAEMOTO 3HaYeHHS B cCiaydaliHoM mnone. UHCHCHHBIE NPEMEPHI
PacCMaTPHBAIOTCA HA OCHOBE TayCCOBCKHX H raMMa pacnpeleneHnd xax QyHKUaN IIOTHOCTH BEPOAT-
HOCTH, OTIpeAeNsIOLIMX CTyqafiHbie NepeMeHHbIC.



