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Abstract-In this analysis, an attempt is made to simulate thermal conductivity of the material in the 
contact area between two bodies as a random variable in the process of heat diffusion. The problem is 
formulated as a stochastic field in contact with two deterministic fields. The randomness is considered to 
vary from one specimen (two bodies in contact) to another in a statistical ensemble space Q. The stochastic 
response in the contact area is presented in terms of the mean value and standard deviation of the 
temperature field. A perturbation scheme is employed in the formulation such that the stochastic response 
for the present problem with intrinsic randomness can be obtained in the same manner as that in the 
problem with extrinsic randomness. The implicit finite difference method is used to solve the field equations 
governing the deterministic components of the random temperatures. The locations possessing the 
maximum deviations from the expected value in the random field are investigated. In the numerical 
examples, both Gaussian and Gamma processes are considered as the probabilistic density functions 

governing the random variates. 

INTRODUCTION 

WHEN HEAT passes through the interface between 
two bodies in contact, the amount of thermal energy 
transferred depends on the modes of heat conduction 
through solid-to-solid contact, heat conduction and 
convection through the interstitial gas region and 
thermal radiation among the contact surfaces. As a 
global evaluation, the constriction resistance in this 
area can be estimated by the fraction rule weighing 
the respective volumes of the solid media and the air 
relative to that of the total. The surface configurations 
of the two bodies in the contact area obviously domi- 
nate the modes of thermal energy transfer. Owing to 
irregularity of the contact pattern and its sensitive 
variation with the applied pressure, the relationship 
between the volume fraction of each medium and the 
constriction resistance can hardly be deterministic in 
reality. 

Traditionally, a zonal resistance or conductance is 
established for the contact area such that the heat 
transfer through this complicated area can be esti- 
mated according to the temperature difference across 
it. For bare materials, Yovanovich developed a gener- 
alized analytical model for metal paraboloids [l] and 
extended it later to the contact between a single spheri- 
cal surface and a flat plate [2]. Under this approach, 
it is assumed that the surface roughness of the contact 
surfaces is negligible and that heat conduction and 
convection in the surrounding fluids are absent. The 
complicated heat transfer modes in the contact area 
are absorbed in a thermal constriction resistance para- 
meter which is a function of the deformed geometries 
of the two bodies in contact. Some elasticity theories 

are also involved in this model to characterize the 
contact configuration of the solid under an exerted 
pressure. The contact radius for a spherical particle, 
for example, in contact with a flat plate has been 
obtained under the Hertzian condition [3] and ex- 
pressed in terms of Young’s modulus and Poisson’s 
ratio of the two bodies. The effects of thermal strains 
on the contact configuration were also considered as 
early as 1966 [4]. 

The modelling techniques used in the problems of 
contact between bare materials are also extended to 
the estimation of the thermal contact conductance of 
packed beds in contact with a flat surface. Typical 
examples can be found in refs. [5,6]. Peterson and 
Fletcher [6] combined the analytical models estab- 
lished by Yovanovich and Kitscha [2] for bare 
materials and Clausing and Chao [7j involving the 
effects of microscopic asperities. The resulting 
expression for the thermal constriction resistance in 
their model contains, in addition to the Hertzian con- 
tact radius and the mean harmonic conductivity, the 
Roess microscopic constriction alleviation factor and 
the total number of contact points. Experimental 
results for the beds comprising aluminum 2017-T4, 
yellow brass, stainless steel 304 and chromium alloy 
AISI 52100 in contact with flat stainless steel 304 were 
obtained and checked with their model. 

It is important at this point to distinguish the resist- 
ance induced by surface roughness and that induced 
by surface waviness. In the analytical approach, the 
assumption that the contact spot has a certain shape- 
say a circle-actually contributes to the effect induced 
by the surface waviness. The characteristic dimension 
of the spot must be confined to the continuum level, 
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NOMENCLATURE 

process parameter 
heat capacity in the contact domain 
probabilistic density function in the 
sample space 
physical dimension of the contact 
domain 
mean value of T 
random sample function 
boundary temperature 
deterministic functions in thermal 
conductivity 
stochastic function defined in equation 

(2) 
nodal sequence in the finite difference 
method 

S[T] standard deviation of T 
T random temperature in the domain of 

contact 
TA, T, deterministic temperature in solids A 

and B 
t physical time 
At equal time increment used in the finite 

difference method 
Var [T] variance of T 
I/‘“’ deterministic component of T”” 

ix 
space variable 
equal spacing among nodes in the finite 
difference method. 

random thermal conductivity in the 
contact area 

k,, k, thermal conductivity for solids A and B 

k, algebraic mean of kA and kB 
L length of solid media A and B 
m sequence of the time increment 
N total number of nodes 
n order of the perturbation system 

P process parameter 

4 heat flux vector 

Greek symbols 
u random number of specimen in R 
E amplitude of the random fluctuation of k 
K*, K~ thermal diffusivity in solids A and B 

KM equivalent thermal diffusivity defined 
from k, 

i parameter defined as At/(Ax)* 

P density of the medium in the contact 
domain 

n statistical ensemble space. 

or the analysis based on a continuum formulation 
does not have sufhcient resolution. Doubtless, this 
approach provides enough information for the 
thermal field around a cavity. 

In dealing with the effects induced by the surface 
roughness, a different approach is needed in order to 
incorporate the combined effects of all the subscale 
interactions among the attending media in the contact 
area. Since the heat transport process-say a thermal 
diffusion equation in the solid-is formulated in a 
scale at least two to three orders of magnitude larger 
than that of the surface roughness, one may choose to 
treat the subscale interactions as a disturbance to the 
thermal properties used in the continuum formu- 
lation. Furthermore, because the contact pattern 
between two bodies is sensitive to the applied apparent 
pressure, such a disturbance is formulated more 
appropriately as a random variable, especially under 
dynamic contact situations. Under a certain stochastic 
process governing the probabilistic distribution of 
thermal conductivity in the statistical ensemble space 
R, one wants to estimate the mean value of tem- 
perature as well as its standard deviation resulting 
from such a disturbance. As discussed in ref. [8], the 
problem formulated in this manner introduces intrin- 
sic randomness to the system, and a special pertur- 
bation technique may need to be employed to avoid 
difficulties in dealing with a field equation with 
random coefficients. 

In the present study, this approach is taken and the 
thermal conductivity in the contact area is formulated 
as a random variable. Its amplitude, due to the dis- 
turbance from subscale interactions, varies from one 
specimen (two bodies in contact) to another in the 
space R. Conceptually, this is also the situation for a 
single specimen subjected to capricious contact pres- 
sure under dynamic conditions. The temperature dis- 
tribution across the contact area will be presented 
in terms of its mean value and standard deviation. 
Several typical stochastic processes for the random 
fluctuation are to be considered in a transient problem 
considered as an example. 

FORMULATION OF THE PROBLEM 

Consider the transition of thermal conductivity from 
solid A to B shown in Fig. 1. The total length and 
contact region between the two bodies are assumed 
to be 2L and 2d, respectively. Without loss of gener- 
ality, it is also assumed that 2L and 2d are equally 
shared by the two media. It should be noticed that the 
half contact length d here is not the characteristic 
dimension of the surface roughness, but rather a 
threshold beyond which the effects of subscale dis- 
turbance cannot be detected. Obviously, the value of 
d should be smaller if the contact is smoother, and larger 
if the contact is rougher. For XE [ - L, -d] and 
XE [d, L], therefore, thermal conductivity has deter- 



Stochastic modelling for contact problems in heat conduction 915 

FIG. 1. Configuration of two bodies in contact and transition of the thermal conductivity. 

ministic values of kA and kg, respectively. While in 
the contact region x E [-d, 6], the complicated heat 
transport process (conduction in media A and B, and 
mixed conduction and free convection in the void 
space) is simulated by a medium with random thermal 
conductivity. Its amplitude E oscillates up and down 
along a certain path of transition in each case, but in 
a series of experiments, the oscillatory pattern also 
randomly varies from one case to another through a 
stochastic sample functionf(a). A functional form of 
the thermal conductivity in this domain can thus be 
written as 

where 

k(x) = kM KelMs(x; 4+s&ll (1) 

kM = (k, + M/2, 9(x ; a) = f(a)g , (x) 

g,(x) =x2-d’, gz(x) = [(~,--kJ2hd~+l. 

(2) 

The sample functionf(a) is governed by the proba- 
bilistic density function @.d.f.) D(a) under a certain 
stochastic process of the random variate a. It is defined 
in an average sense over the entire space R through 
the p.d.f. : 

WWI = 
s 

f(aP(a) da9 n 

Var V(a)1 = Nf(a> -WWl) ‘. (3) 

The problem formulated in this manner involves a 
stochastic field in contact with two deterministic fields. 
For XE [ - L, -d] and XE [d, L], the thermal con- 
ductivities are deterministic constants, and the 
diffusion equation can be written as 

T A+X = U/KA)TA,~ forxe[-L, -d] (4) 

T B,xx = WB)TB,, forxEk&Ll (5) 

while for x E [-d, d], due to the x-dependence of k 

Bn‘f 3215-I 

shown in equation (1), one has 

[k(x)T,.J, = M,, . (6) 

Since k(x) in the contact region is a random function, 
equation (6) is a partial differential equation with 
random coefficients. As discussed in detail in ref. [8], 
solving this equation directly will render a situation 
in which the random response (say, mean value of 7”) 
of the system depends not only on the intrinsic 
random excitation with the same statistical order 
(mean value of k), but also on those with higher 
orders, such as covariance between k and T*, and 
k, and T,. Unless a statistical constitutive equation 
relating Cov [k, T,J and Cov [k,, T,1 to E[q can be 
established experimentally, this approach is difficult 
to apply, since the number of equations is always 
less than the number of unknowns. In this situation, 
thermal conductivity formulated in the form of equa- 
tion (1) has its advantage in using the perturbation 
method suggested in the previous work. By substitut- 
ing equation (1) into equation (6), one may obtain 

~(~lk~~lg+~21T,xx+[(~lkhi1~.x+~2,~1T,~ = WMV’,, 

(7) 

with K,., being defined as kM/pc. Equations (4), (5) and 
(7) constitute the governing equations for the thermal 
field under consideration. The initial and boundary 
conditions imposed on the system are assumed to be 

T(x, 0) = TA(x, 0) = TB(x, 0) = 0 at t = 0 (8) 

and 

TA =fA(r) atx = -L 

T,=T and TAJ=TTs atx=-d 

T,=T and TBJ=TJ atx=d 1 

(junction 
conditions) 

TB =0 atx= L. (9) 

It should also be mentioned that the temperature and 
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its gradient in the stochastic field are only defined 
in a mean value sense. The junction conditions in 
equation (9) guarantee that the statistical quantities 
are continuous across the interface. As far as this 
point is concerned, one should recall that the mean 
value of a deterministic quantity is equal to the quan- 
tity itself, and the variance of a deterministic quantity 
is equal to zero. 

PERTURBATION SYSTEM OF THE 

GOVERNING EQUATIONS 

For the contact pattern dominated by the surface 
roughness, the fact is recognized that the amplitude E 
of the disturbance imposed on the thermal con- 
ductivity k(x) (referring to equation (1)) should be 
small in comparison with the mean value of k, . This 
suggests the possibility of using the quantity E/kM as 
a small parameter ; a perturbation algorithm can thus 
be developed. By expanding T(x, t ; a), TA(x, t ; a) and 
T&, t ; a) in terms of a series of c/kM 

{ T(x, t ; a), TA (x, t ; Co, Z’&, t ; a)> 

=n~O(e/k,)“{P’(x,t;a),T+$‘J(x,t;a),T$’)(x,t;a)} 

(IO) 

and substituting equation (10) into equations (4), (5) 
and (7), a system of equations can be obtained for 
various orders of c/kM. The following results are 
obtained : 

zeroth-order system 

TfLX = (l/q,)Tfj T& = (l/rc,)T~~ (11) 

M,$?+~~.xT~“) = (WM)T?’ (12) 

subjected to the initial and the boundary conditions 

‘&r(O) = TAO) = TAO) = 0 at t = 0 (13) 

and 

Ti’)=f,(t) atx= -L; T&O)=0 atx=L 

TAO, = T(o). Tko; = T(o) Y , .X atx= -d 

The) = T(O) ; Th: = T(O) ,x at x = d (14) 

nth-order system ; n = 1, 2, 3, . . . (positive integers) 

Tk’X = (l/rc,)Tf{ T$iX = (l/~a)T&“/ . . . (1s) 

g2~~~+g2,x~(xn)-(l/IcM)T!“) = -gTT;‘)-g,T$-” 

(16) 

subjected to the initial and the boundary conditions 

T(“) = Tf) = J’$) = 0 at t = 0 (17) 

and 

Tp)=O atx=-L; T$)=O atx=L 

Tt) = j”‘“’ ; @; = T’“’ .x atx= -d 

T$) = T(“) ; T$“i = T(“) . 4 at x = d. (18) 

It is first observed that the zeroth-order system shown 
in equations (1 l)-(14) is the corresponding deter- 
ministic problem with E being zero (0). It is then clear 
that the effects of subscale disturbance will gradually 
enter the problem as the contributions of T(“), 
n= 1,2,..., are summed in perturbation series (10). 
Another nice feature about the perturbation system 
can be observed from equation (16). Due to the pres- 
ence of the g function and its derivative on the right- 
hand side of the equation, T(“)(x, t ; a), Tt)(x, t ; a) and 
T$)(x, t ; a) can be expressed in the following form : 

{ T(“)(x, t ; a), Tt)(x, t ; a), T$‘)(x, t ; a)} 

= f(“)(a){ P)(x, t), V,!)(x, t), @)(x, t)}, n = 1,2,. . . 

w9 

because the boundary conditions, except those for 
n = 0, are homogeneous in various orders of the per- 
turbation system. Substituting equation (19) into 
equation (lo), one thus obtains 

{ W, t ; ah TAk t ; 4, T&T t ; Co) 

= “to (E/k,)“S(a){ V’“‘(x, t), @‘)(x3 t), f’$“‘(x, t)> 

(20) 

where the equations governing V’“‘(x, t), Vt’(x, t) and 
V$‘)(x, t) are the same as those shown by equations 
(11) and (12) for n = 0 and equations (15) and (16) 
for n 3 1, except that g and g,X on the right-hand 
side of equation (16) are replaced by g , and g ,,X, 
respectively. It is important to notice that all the V- 
functions under such a formulation are deterministic. 
The effects of random fluctuation on the temperature 
field are concentrated on the factor of f”(a) in the 
perturbation series. The solutions of T, TA and T, 
expressed in the form of equation (20) make it possible 
to calculate the mean value and the standard deviation 
of the temperature fields in a straightforward manner. 
For the time being, however, we will focus our atten- 
tion on finding the solutions for V(“)(x, t), Vf)(x, t) 
and V$“)(x, t). Although the zeroth-order system- 
equations (1 l)-( 14)--may have analytical solutions, 
the implicit algorithm of the finite difference method 
[lo] will be used in this analysis. Due to the non- 
homogeneous term appearing in the first-order 
system, analytical solutions for the first and higher- 
order systems cease to exist, owing to the complicated 
integral involving the zeroth-order solution and the 
Jacobian of the homogeneous solutions. 

The implicit finite difference algorithm is uncon- 
ditionally stable and straightforward in the present 
problem, Supposing that the entire field is discretized 
into N nodes with equal spacing Ax = 2L/(N- l), the 
implicit difference equations corresponding to equa- 
tions(11),(12),(15)and(16)atatimeinstantt = mAt, 
with m being a positive integer, are 



Stochastic modelling for contact problems in heat conduction 917 

VJ+(i,m+l)-@)(i,m) = rc,rZ[Vy)(i-l,m+l) 
JW(x, 41 = i w~MI)nRfY~w(“)(x, 0 

-2Q)(i,m+l)+V~)(i+l,m+l)] 
It=0 

Var F’Yx, 01 = WdZ Var Lf@>l 
forJ=A,Bandn=0,1,2 ,... (21) 2 

V~“~(i,m+l)-V~o~(i,m) = ~M~g~[V(o)(i-lrm+l) 
x c V’“‘(x, t)V’r-“‘(x, 2) (25) 

VI=0 

and the standard deviation of the random temperature 
from its mean value 

+KM(At/Ax)g:,Jl’(“)(i+ 1, m)- V(‘)(i, m)] (22) 

rc,IZ$,[V(“)(i--l,m+l)-2P(i,m+l) 

+ V~“~(i+l,m$l)]+rcM(At/Ax)gr&‘(“)(i+l,m) 

- P(i,m)]-[P(i,m+ l)- V”)(i,m)] 

x[V’“-‘)(i+l,m)-V’“-‘)(i,m)], II= 1,2 ,... 

(23) 

where 1= At/(Ax)*. In these equations, the symbol 
(i,m) denotes a physical quantity calculated at the 
ith node and the mth time instant, and superscript i 
denotes a function calculated at the ith node in the 
spatial discretization. The procedure for solving equa- 
tions (21)-(23) subjected to the initial and boundary 
conditions (14) and (18) in various orders of the per- 
turbation system is quite standard and will not be 
repeated here. 

For the nodes in the contact area, the algorithm of 
Lagrangian interpolation is further employed to 
improve the accuracy in estimating the derivatives of 
I/(“- “(i, m). For a value of c/kM lo%, an accuracy of 
0.1% can be achieved by solving the perturbation 
system up to the second order. For a more serious 
situation with, say, c/kM = 0.5, the same accuracy can 
be achieved by solving the system up to the tenth 
order. In the event that E/ky is even larger than this 
threshold, surface waviness must be considered in the 
formulation, but this situation is not covered in the 
present analysis. 

STOCHASTIC RESPONSE OF THE 

THERMAL FIELD 

WYx, 01 = JOIar [W, 01) (26) 
can be obtained consequently. At this point, a situ- 
ation is achieved in which the statistical order of the 
random response is the same as that of the random 
excitation. This is a characteristic possessed by prob- 
lems with extrinsic randomness, and calculations on 
the stochastic response of the system can thus be made 
in a straightforward manner. 

The heat flux vector can be obtained from Fourier’s 
law of heat conduction 

q(x, t; a) = -k(x; a)T,, (27) 

and from equation (27), one has 

+ Wdg , WW”+ ’ (411 (28) 

for the mean value 

Var Mx, 01 = -Me/kM)*{W(a)] 

- ~*LfW + WWdW(Xf3@91 

-~3m41i) i Vv!?) (29) 
II=0 

for the variance, and 

SMx, 01 = J(Var Mx, 01) (30) 

for the standard deviation of q(x, t), 

NUMERICAL EXAMPLES 

The ratio c/kM will be taken as 0.1 in the following 
examples, and the perturbation system will be solved 
up to the second order. The sample functionf(f) is 
assumed to have an exponentially decaying form in 
the space R : 

fb4 = w C--w) (31) 
The temperature field obtained from equation (20) 

is only meaningful in a statistical sense. For an 
while in the first example, the random variable a is 

expression with second-order approximation 
assumed to be governed by a Gaussian distribution [9] 

{ T(x, r ; 4, TA (x, t ; 4, Tdx, t ; 4) 
D(a) = (I/bJ(2s)) exp (- a2/2bz). (32) 

The mean value for various orders of f(a) and the 
N { V’O’(x, t), Q’(x, t), VhO’(x, t)} variance can be obtained as 

+ (elk&o){ I’(‘Yx, 0, Wx, 0, W(x, 0) W(a)1 = exp @*p*/2), Xf’W = exp Wp’h 

+ (c/kp.,)*j-*(a){ V’“(x, 0, ?‘A*)(x, 0, F’h”(x, t)} (24) W?x)] = exp (9W/2), 

the mean value and variance of T(x, t ; CL) can be 
Var [f(a)] = exp (2b2p2) -2 exp (5b2p2/2) 

obtained as [8] +exp (4b2p2). (33) 
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FIG. 2. Mean value of the temperature distribution in the contact area at t = 150, 350, 750 s, and the 
steady-state distribution (denoted by the dashed line). Gaussian process with p = 0.2 and b = 2. 

As a second example, the same random functionf(a) 
is considered, but a is assumed to be a Gamma variate. 
In this case, the p.d.f. can be expressed as 

D(cY) = [a”- ’ ev (- ~YWlW4 (34) 

where r( ) and H( ) are the Gamma and Heavi- 
side unit step functions, respectively, and the cor- 
responding equations to equations (33) can be ob- 
tained similarly 

JWWI = (1 fCb> -qf’@>l = (1 +2p)-b, 

E[f3(C()1 = (1 +3p)-h 

Var[f(a>] = [(P+1)2b-(2~+l)b]/[(2p+l)b(p+1)26]. 

(35) 

For the physical and geometrical parameters involved 
in the system, the contact between aluminum and steel 
is considered in a domain of approximately 5.86% of 
the total length 

L = 0.32m, d = 1.875 x lo-’ m 

fA = 250°C ~,=8xlO-5ms-‘“C-’ 

leg = 1 x 10-5ms-‘“C-‘. (36) 

In every perturbation system with n = 0, 1 and 2, a 
total of 256 nodes (120 in each solid and 16 in the 
contact domain) is used in the field discretization. The 
time increment is selected as 50 s in the calculations. 
At a given time instant, based on the algorithm of 

46 
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FIG. 3. The effect of process parameter p on the mean value of temperature distribution at r = 150 s. 
Gaussian process with b = 2. 
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FIG. 4. Standard deviation of the temperature distribution at t = 150 s. Gaussian process with b = 2 and 
p = 0.2.0.8. 

Lagrangian interpolation, 31 nodes in the stochastic 
field are incorporated in the tinite difference solutions 
for v(‘)(x, r) and fi2)(x, t) with x E [-cd, d]. This is to 
enhance the accuracy in estimating the spatial deriva- 
tives involved in the non-homogeneous terms of the 
frrst- and the second-order system; as well as those 
appearing in the junction boundary conditions at 
x= fd. 

With emphasis being placed on the contact domain, 
Fig. 2 shows the mean value of temperature dis- 
tribution at z = 150, 350 and 750 s. The steady-state 
distribution is obtained by dropping the terms con- 
taining time derivatives in equations (1 l), (12), (15) 
and (16). As time increases, the temperature dis- 
tribution approaches the steady state and the numeri- 

cal convergence of the present algorithm is fairly clear. 
The process parameters b and p in the Gaussian pro- 
cess are taken to be 2 and 0.2, respectively. The effect 
of parameter p on the distribution of E[T(x, t)] is 
shown in Fig. 3 when the value of b is 6xed at a 
constant 2. At a given location x, the value of 
E[T(x, r)] increases as the value of p decreases. The 
difference among the distributions becomes more sig- 
nificant if either the value of b or the boundary tem- 
perature fA is increased. Furthermore, in view of the 
symmetry of b and p appearing in equation (33), one 
may expect the same effect of b on E[T(x, r)]. The 
standard deviation of the temperature distribution is 
shown in Fig. 4. It is first noticed that a maximum 
deviation occurs at x N - 13.4 mm in the stochastic 

FIG. 5. The effect of process parameter p on the mean value of the temperature distribution at r = 150 s. 
Gamma process with b = 2. 
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FIG. 6. Standard deviation of the temperature distribution at t = 150 s. Gamma process with b = 2 and 
p = 0.2,0.8. 

field-approximately 36% of the corresponding mean 
value. The standard deviation S[T(x, r)], similar to 
E[T(x, f)] but not as pronounced, decreases as the 
parameter p increases. Owing to the junction con- 
dition (9) imposed at the boundaries at x = +d, the 
values of S[T(x, r)] do not vanish in the deterministic 
fields A and B. But the magnitude, especially in the 
regions far away from the boundaries, is negligible in 
comparison with that in the stochastic field. Figures 
5 and 6 show the mean value and standard deviation 
of the temperature distribution under the Gamma 
process. Parameters b and p in this case are those 
defined in equation (35). With a constant value of b 

of 2, the effects of p on E[T(x, t)] and S[T(x, t)] are 
observed to be reversed with respect to those in the 
previous case. This is caused by different forms of 
D(a) between Gaussian and Gamma processes. In Fig. 
6, one also observes that the differences between the 
maximum deviations for p = 0.8 and 0.2 become 
larger-by 22 and 12%, respectively, relative to their 
mean values. Again, the amount of deviation from 
the expected value is by no means negligible. The 
stochastic response for the heat flux vector can be 
calculated in the same fashion according to equations 
(28)-(30). Since it only includes spatial derivatives on 
deterministic functions, discussion of q(x, t) will be 
omitted in this study. 

CONCLUSION 

Deterministic analysis can be adopted for an engin- 
eering system if the standard deviation is small in com- 
parison with the corresponding mean value. In the 
present analysis, the amount of standard deviation 
has been shown to depend on the p.d.f. of a stochastic 
process as well as the parameters involved in it. Under 
the parametric values considered in the numerical 
examples, some cases have been proved for which 

stochastic analysis is necessary. The occurrence of a 
maximum standard deviation from the mean value 
reveals the importance of giving special consideration 
to the solid medium. It is expected that the tem- 
perature gradient in this neighborhood will also have 
a significant deviation, which must be considered care- 
fully in the analysis of failure induced by the thermal 
field. A more complicated situation will result if the 
geometrical contact pattern between the two bodies is 
further considered as another random variable in the 
present formulation. In this case, the stochastic pro- 
cess governing the surface waviness in one specimen 
(two bodies in contact) will interact with that govem- 
ing the random variation from one specimen to 
another in the space CL Owing to the complexity 
involved in this type of problem, it will be left for 
future communication. 
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MODELISATION STOCHASTIQUE DES PROBLEMES DE CONTACT DANS LA 
CONDUCTION THERMIQUE 

R&n&-On simule la conductivitt thermique d’un ma&au dans la zone de contact entre deux corps par 
une variable aleatoire dans le mecanisme de diffusion thermique. Le problbme est formule comme &ant 
un champ stochastique en contact avec deux champs deterministes, avec variation dun specimen (deux 
corps en contact) a un autre dans un espace statistique R. La reponse. stochastique dans la zone de contact 
est present&e en fonction de la valeur moyenne et de l&art-type du champ de temperature. Un schema de 
perturbation est employ6 dans la formulation de telle sorte que la reponse stochastique du probleme present 
puisse Btre obtenue de la m&me man&e que dam le probleme avec distribution extrindque. La methode 
aux differences finies implicite est utilis&e pour resoudre les equations de champ qui gouvemant les 
composantes diterministes des temperatures altatoires. On etudie les regions possedant les deviations 
maximales par rapport a la valeur attendue dans le champ altatoire. Dans les exemples numeriques, 
on considere a la fois les mecanismes gaussien et gamma comme les fonctions de densitt probabiliste 

gouvemant les variations aleatoires. 

EIN STOCHASTISCHES MODELL FUR KONTAKTPROBLEME BE1 DER 
WARMELEITUNG 

Zusamtnenfasstmg-Es wird versucht, die Wlrmeleitfahigkeit im Kontaktbereich zwischen zwei KBrpem 
beim WBrmediffusionsvorgang als zufallsverteilte Variable zu beschreiben. Der Vorgang wird beschrieben 
als ein stochastisches Feld in Berilhrung mit zwei determinist&hen Feldem. Die Variationsmoglich- 
keit der Zufallsverteilung zwischen den beiden Kijrpem wird in einem statist&hen Raum-Ensemble 
beschrieben. Das stochastische Verhalten im Kontaktbereich wird durch den Mittelwert und die Standard- 
abweichung des Temperaturfeldes ausgedriickt. Ein Stiirungsschema wird in der Form angewandt, 
da8 das stochastische Verhalten des vorliegenden Problems mit innerer Zufallsverteilung auf gleiche Art 
und Weise erhalten werden kann wie das bei extemer Zufallsverteilung. Es wird die implizite Finite- 
Differenzen-Methode verwendet, um die Feldgleichungen der determinist&hen Komponenten der 
zufallsverteilten Temperaturen zu l&en. Es werden die Punkte untersucht, die maximale Abweichungen 
gegenilber den zu erwartenden Werten des zufallsverteilten Feldes aufweisen. In den nmnerischen Beispielen 
werden sowohl Gaul% als such Gamma-Funktionen als die wahrscheinlichsten Verteilungsfunktionen zur 

Beschreibung der Zufallsverteilung venvendet. 

CTOXACTH’IECKOE MO~EJIHPOBAHHE KOHTAKTHbIX 3A&A9 
TEI-IJIOIIPOBO~OCTI4 

~IIpenllpiiHa lIOIl&lX2l IXOJleJlHpOSaTb TeMOllpOSOJWXTb BcIUeCTBB B 06nacm LOH- 

TarTa~yxTenKarcJry9a~nepeMeHAyroBnpoucaxns~y3aeTenna.3anaqa~p~~y~~n 

@ophfe c~oxac~me4xoro nom, ~ommupymuero c ney~a ne~tprdmmpo~~t~bl~~ nonmm. llona- 

raeTcs, 9TO Cny¶&Ocrb EmieHnemx 01 o@oro 06pa3na (nSa KonTaxrnpymnmx Tena) K npyroruy B 

npocrpawcraecraTacrRIecroro~~~QCToxacrw e4xd OTxJim B o6nacm KORTaKTa BupaxeH 

cperuolM3Ha~e~e~acr~~o~o~emre~TeMn~~~orononn.kIcno~ycTca~nonao3- 

Myulc~,no3~onaroupritnon~croxarmn~o~~n~ol~~csHyTpenrraMRno9- 

HBXOM cJry9ahmcm c~oco60~, amnormtibm npmemerdobsy B 3anane c mew IICTOSBBIOM 

cny9~ocra.YpaBAeAAnnonn,onpen~~e~~~mrpo BBBwIe ~orduo~emb~ rzyw&mx 3Haqe- 

mii Terb4nepaTyp~,pemam~cn~ennmh4 ro~entro-pa3mcmbm ~nonohs.@kcne11~1O~cso6nacnrcmar- 

cmanbmbm 0Tiinonefuierd OT oxwaehnoro 3xiaqemw B cnygalhror4 none. %w.neAwble npmepbi 

paccMarpmuuorca na ocrioae rayccoacmix H rahu4a pacnpeaenemrtl xax &nmudl nnorriocm aeponr- 
nocrn, onpeztennrottmx cny=tatlnbte nepe~ennue. 


